
USING COMPUTABLE NUMBERS TO SOLVE THE DECISION

PROBLEM

KATHERINE STEINER

This paper gives an overview of Alan Turing’s 1936 paper On Computable Numbers,
with an Application to the Entscheidungsproblem [3], the paper in which Turing in-
troduces his now famous hypothetical Turing machines. We’ll first give some history
of the problem Turing was trying to solve, and then give a detailed synopsis of his
first major result: that the computable numbers are countably infinite. With a better
understanding of Turing’s machines, we’ll then outline how Turing built on these ideas
to solve a decision problem.

1. Introduction to the decision problem

In August 1900, David Hilbert gave a speech at the Second International Conference of
Mathematics, and posed problems he considered mathematically interesting to encour-
age mathematicians to study them. His tenth problem, “Entscheidung de Lösbarkeit
einer diophantischen Gleichung,” in English reads:

10. Determination of the Solvability of a Diophantine Equation1

Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers. [1]

We note that Hilbert isn’t asking for a general process to solve Diophantine equations,
but a process to determine whether or not they can be solved at all. In fact, in the
statement of the problem, Hilbert already assumes that a general process exists. In
Turing’s paper, he proves a result, related to a more general decision problem, the
Entscheidungsproblem:

Theorem 1. The Entscheidungsproblem can have no solution, i.e. no general process
for determining solvability of a statement given a set of logical axioms can exist.

This problem is related to Gödel’s Incompleteness Theorem:

Theorem 2 (Gödel’s Incompleteness Theorem). Given a consistent set of axioms,
there exist statements which cannot be proven to be true or false.

1A Diophantine equation is a polynomial equation, usually with multiple indeterminants, with inte-
ger coefficients in which only integer solutions are allowed. For example, x3 + y3 = z3 is a Diophantine
equation with no integer solutions, by Fermat’s Last Theorem.

1

2 KATHERINE STEINER

From Gödel, we know unprovable statements exist, so the Entscheidungsproblem is to
find a process to decide which are these statements. In the first part of Turing’s paper,
he develops a theory of computable numbers, which we will define carefully later in
Definition 4, and proves the following result.

Theorem 3. The computable numbers are countably infinite.

In the second part of his paper, he shows that this theory can be used to prove Theorem
1. While certainly an interesting and substantial result, Turing’s paper did not actually
answer Hilbert’s problem, but a related one. Turing’s paper addresses the decision
problem in the context of the provability of a logical statement, while Hilbert’s problem
is concerned with the solvability of an algebraic equation. After Turing’s paper was
published, mathematicians suspected that Hilbert’s tenth problem would also have no
solution, but it was not until 1970 that Hilbert’s tenth problem was finally answered
when Yuri Matiyasevich proved that no general process for determining the solvability
of Diophantine equations can exist.

Now that we understand the problem, and the inspiration for the problem, that Turing
was trying to solve, we can summarize the proof of his first major result, Theorem 3,
which states that the computable numbers are enumerable. This proof will introduce
us to the ideas of Turing’s computing machines. Once we understand these theoretical
machines, we can give a synopsis of the rest of Turing’s paper.

2. Computable numbers

In Turing’s paper, he shows that no general process exists for determining the solvability
of a statement can exist. At face value, it seems like this should require some kind of
very abstract argument. Instead, Turing begins his paper by describing hypothetical,
but fairly simple, machines which can preform a limited set of operations. Later he’ll
use these machines to prove Theorem 1.

The following is a more detailed synopsis of Turing’s proof that the computable num-
bers, which he defines as follows, are countable. In Turing’s eleven section paper, this
proof begins in Section 1 and finishes in Section 5.

Definition 4. A computable sequence is a sequence which can be written down by
a machine given a finite number of instructions. A computable sequence of 0’s and 1’s
(e.g. 010101...) corresponds to the computable number written in binary obtained by
prefacing the sequence with a binary point (0.010101... which in base ten is 1/3). The
numbers between 0 and 1 which can be obtained in this way are computable numbers.
Computable numbers also include numbers which differ by an integer value from the
computable numbers between 0 and 1.

Throughout Turing’s paper, he mostly uses the language of about computable se-
quences, rather than computable numbers, to avoid confusion, and only talks about
real numbers. It follows immediately from the definition that there are infinitely many
computable numbers. (Informally, if we can accept that there is at least one com-
putable number a between 0 and 1, then since the computable numbers also include

USING COMPUTABLE NUMBERS TO SOLVE THE DECISION PROBLEM 3

numbers which differ by an integer value from a, and there are infinitely many inte-
gers, then there are infinitely many computable numbers.) To show that these are
enumerable, Turing describes computing machines, which can each compute exactly
one computable number, and then shows that we can assign a unique “description
number” to each computing machine. Thus we can construct an injection to Z, so the
computable numbers are countably infinite.

Turing first describes a general machine as follows. The machine has an infinitely
long tape, which is originally blank, divided into squares, which can each contain
a symbol. At any moment, the machine “scans” the rth square, whose symbol (if
there is one) he denotes by S(r). At any moment, the machine has one of a finite
number of m-configurations, which when Turing first introduces them, are denoted
by Fraktur letters b, c, etc. An m-configuration describes what the machine can do
at this time. The combination of a S(r) and a m-configuration Turing refers to as
simply a configuration. A machine can: erase its current scanned symbol, print a new
symbol, change the scanned square by one to the right or left, or change its current
m-configuration. Note that the machine has no concept of “memory” as do modern
computers we are familiar with- the behavior of Turing’s computing machines depend
entirely on the machine’s currently scanned symbol S(r) and current m-configuration.
Also, this kind of computing machine can only compute one sequence; it is not a
reprogrammable computer.

For the purposes of this paper, Turing is interested in automatic computing machines:
machines whose behavior is entirely determined by its current configuration (the ma-
chine always “knows what to do,” i.e. its motion is well defined, and its next step is
never ambiguous), and which print symbols “of the first kind” (which are 0’s and 1’s)
and “of the second kind” (which will be used as rough notes to aid in computation,
could be anything other than 0’s or 1’s, and in particular Turing uses x and @ in his
examples). The squares of the tape alternate between E-squares and F -squares. Only
symbols of the second kind can be printed on E-squares, and only E-squares may be
erased. Only symbols of the first kind can be printed on F -squares, and the symbols
on the F -squares form a continuous sequence of 0’s and 1’s which corresponds to a real
number between 0 and 1, printed in binary. If the machine prints 01, then we say that
the machine has computed the binary number 0.01, which in base 10 is 1/4. An ex-
ample tape, at some point in a computing machine’s operation, might look something
like the following, where the currently scanned square is heavily outlined.

1 x 0 0 . . .

Finally, Turing introduces the idea of a circle-free machine, which is a machine which
prints 0’s and 1’s forever. For example, he wants the machine computing the sequence
of 0’s and 1’s corresponding to the binary representation of the decimal number 1/4 to
print 01000 . . . , and continue printing 0’s forever. If, at some point, the machine can
no longer print any more symbols of the first kind, then we say that the machine is
circular2.

2See Appendix, example 1 for a machine which is circular.

4 KATHERINE STEINER

The paper then gives examples of computing machines, one which computes the se-
quence 010101 . . . which corresponds to the binary number 0.010101 . . . and to the base
10 rational number 1/3, and one which computes the much more complicated sequence
010110111011110111110 . . . (a 0, one 1, 0, two 1’s, 0, three 1’s, etc). He provides tables
relating the current configuration of the machine (m-configuration and symbol pair)
to what operations the machine takes (moving to the right or left, printing or erasing
symbols) and to which m-configuration the machine switches. He also writes about
skeleton tables, abbreviations of the tables of m-configurations for common processes,
such as copying down sequences or comparing sequences. These are not essential to
the proof, but do make later work easier.

The following is the table of the (very simple) machine which prints the sequence
010101 . . . which corresponds to 1/3, provided by Turing on page 2333. P0 means the
machine prints a 0, P1 means that the machine prints a 1, and R means that the
machine moves to the right. All of Turing’s machines begin in the m-configuration b.

m-config. symbol operations final m-config.
b None P0, R c
c None R e
e None P1, R f
f None R b

At the start, the tape is blank, and the currently scanned square is heavily outlined:

. . .

So, this machine starts with m-configuration b and there is no scanned symbol. It
therefore prints a 0, moves one square to the right, and switches to m-configuration c.
The tape is now:

0 . . .

Now the machine has m-configuration c and there is no scanned symbol. The machine
therefore moves one square to the right (we’re skipping a square because Turing wants
his machines to only print on F -squares, and we’re currently on an E-square) and
switches to m-configuration e. The tape is now:

0 . . .

Now the machine has m-configuration e and there is no scanned symbol. Therefore,
the machine prints a 1, moves one square to the right, and switches to m-configuration
f. The tape is now:

0 1 . . .

3On the very next page, Turing rewrites this table in a much more compact form, which is given in
the Appendix, example 2, but leaving the table as given here makes our outline, and later work, easier
to follow.

USING COMPUTABLE NUMBERS TO SOLVE THE DECISION PROBLEM 5

Now the machine has m-configuration f and there is no scanned symbol. Therefore,
the machine moves one square to the right and switches to m-configuration b. This
process continues. By following along with the table, we can see that this machine
does indeed print the sequence 010101 . . . forever, and therefore this table, which has
a finite number of instructions, defines the machine which computes the number 1/3.
Thus, 1/3 is a computable number. Also, since this machine does print symbols of the
first kind (0’s and 1’s) forever, this computing machine is circle-free.

This machine’s table is very simple because the operations necessary to compute 1/3
according to Turing’s requirements are straightforward and repetitive4. To compute
other sequences, such as his 010110111011110111110 . . . example, we need to use the
E-squares for scratch work, print other figures, and erase figures. We’ll now describe
how to construct a general machine’s description number, an integer which com-
pletely describes a machine, and also construct our 1/3 machine’s description number.
However, since our 1/3 machine is so simple, some of the steps that we describe will
seem trivial.

By Turing’s definition, a number is computable when its corresponding sequence can be
printed by a computing machine. So any computable number can be described in terms
of the table of m-configurations which define the machine that computes its sequence.
Now Turing wants to standardize these tables, by rewriting these m-configurations.
Where previously we had the machine erasing the symbol on the square, we’ll say that
the machine prints a blank, and where we previously had the machine not printing
anything, we’ll say that the machine prints the same symbol that is already on that
square, or prints a blank if there was already no symbol on that square. So now we can
reduce a line in the m-configuration table to one of three standard forms: the machine
moves left and prints a symbol, the machine moves right and prints a symbol, or the
machine does not move but prints a symbol. Rename the m-configurations so that we
can easily enumerate them; let them now be q1, . . . , qR where the first m-configuration
the machine is in, b, becomes q1. Also, enumerate the finite number of possible symbols
we could print by letting S0 be a blank, S1 = 0, S2 = 1, S3 = @, and so on.

The table for our 1/3 computing machine is now:

m-config. symbol operations final m-config.
q1 S0 PS1, R q2
q2 S0 PS0, R q3
q3 S0 PS2, R q4
q4 S0 PS0, R q1

Now, for each line in the table, we can form an expression in the form qiSjSkLqm,
which corresponds to the line which says that when the machine has m-configuration
qi and the scanned square is Sj , print Sk, move left (for a move to the right, this part of

4In particular, this machine never prints symbols other than 0’s and 1’s, the currently scanned
symbol never affects which operations the machine carries out, and this machine never erases a symbol.
See Appendix, example 3 for a machine for which this is not the case.

6 KATHERINE STEINER

the expression is R, and for no move this part is N), and switch to m-configuration qm.
Take all such expressions of a computing machine and concatenate them, separated by
semicolons; this is now a complete description of the machine.

For our 1/3 computing machine, we have

q1S0S1Rq2; q2S0S0Rq3; q3S0S2Rq4; q4S0S0Rq1; .

Now take this expression, and replace qi with a D followed by A repeated i times and
replace Sj with a D followed by a C repeated j times. Now we have a expression
made up of the capital letters A, C, D, L, R, N , and semicolons. Turing calls this the
machine’s standard description.

For our 1/3 computing machine, we get:

DADDCRDAA;DAADDRDAAA;DAAADDCCRDAAAA;DAAAADDRDA; .

Finally, if we take this expression and replace A with 1, C with 2, D with 3, L with 4,
R with 5, N with 6, and semicolons with 7, we obtain “a description of the machine
in the form of an arabic numeral,” which Turing calls the description number of the
machine. Note that this number completely describes the behavior of the machine. He
calls the machine whose description number is n, M(n), and an arbitrary computing
machine just M.

Thus the description number of our 1/3 computing machine is:

31332531173113353111731113322531111731111335317.

Observe that a particular description number describes exactly one machine, which
computes a unique sequence corresponding to a unique computable number. However,
we could easily define many computing machines which all compute the same sequence5.
Thus, “to each computable sequence there corresponds at least one description num-
ber, while to no description number does there correspond more than one computable
sequence. The computable sequences and numbers are therefore enumerable,” Turing
concludes on page 241.

3. A short discussion of the proof of Theorem 3

In Section 2, we gave an outline of Turing’s proof of Theorem 3, that the computable
numbers are enumerable. If the computable numbers are enumerable, then they are a
strict subset of the real numbers. In Turing’s paper’s section 10, he names some classes
of numbers which are computable: Q, algebraic numbers over Q, numbers which can
be expressed as power series (e.g. π, a transcendental number), and zeros of Bessel
functions. So what would an uncomputable number look like? In Section 8, Turing
uses the idea of Cantor’s diagonal proof that the real numbers are uncountably infinite
to show that there can be no general process for determining whether an arbitrary
computing machine is circle-free, and along the way he defines a sequence of 0’s and
1’s, which he calls β, which is uncomputable. He constructs this β from a list of other

5See Appendix, example 4 for a different computing machine which also computes 1/3.

USING COMPUTABLE NUMBERS TO SOLVE THE DECISION PROBLEM 7

computable sequences in the same way that Cantor constructs his real number from
a list of real numbers. But while Cantor’s new number must also be a real number
that is not on the original list, a β constructed in this way he shows is not necessarily
computable. Another uncomputable number is Chaitin’s constant, which is related to
the probability that an arbitrary machine is circle-free (although this is usually defined
in the context of the halting problem- the question of whether or not an arbitrary
program will run forever or eventually stop). Since this number is uncomputable, it’s
also one of the few numbers which has been proven to be transcendental, by Theorem
5.

Theorem 5. All uncomputable numbers are transcendental (over Q).

Proof. This follows directly from Turing’s claim that all algebraic numbers over Q are
computable. If a number is not computable, then it cannot be algebraic, so it must be
transcendental. Note, however, that not all computable numbers are algebraic. �

4. Paper overview

Now that we have some understanding of Turing’s computing machines, we can outline
the rest of his proof. In Section 2, we went over how Turing defines computable
numbers and describes computing machines. We showed how each computing machine
computes one computable number, and that the computable numbers are countably
infinite. Recall that Turing is interested in “circle-free” machines- machines which
print the 0’s and 1’s forever. Then, Turing uses the concepts of computing machines
to describe a universal machine, a special computing machine which can compute any
computable number (these are now known as Turing Universal Machines, or just
Turing Machines). He next proves that there is no general process for deciding whether
or not a particular computing machine is circle-free. From this, he shows that there
can be no general process for deciding whether or not an arbitrary computing machine
ever prints a particular symbol, say 0.

Turing then links the concept of computing machines to logical problems. He claims
that determining whether a given integer n has a particular property is equivalent to
computing a sequence whose n-th figure is 1 if n has that property, and 0 if n does not.
Up until this point in the proof, Turing hasn’t yet proven that his definition of com-
putable numbers includes all numbers which we naturally would like to be computable.
He first provides an argument appealing to intuition, then a second argument which
uses methods of Hilbert function calculus, and finally a third argument which combines
elements of the first two. In particular, he claims the algebraic numbers over Q, some
transcendentals over Q like π and e, and the zeros of Bessel functions are computable.

Finally Turing uses these tools to answer the Entscheidungsproblem. He claims that for
each computing machine, that we can use prepositional logic to construct some logical
formula (i.e., a statement) based on the m-configurations of a computing machine.
Turing describes how this formula is to be constructed, and shows that there is a
general process for determining whether the formula of the machine is provable if and
only if there is a general method for determining whether the computing machine ever

8 KATHERINE STEINER

prints a particular symbol. But he has already shown that there is no general process
for deciding whether or not an arbitrary computing machine ever prints a particular
symbol. Therefore, he concludes, the Entscheidungsproblem has no solution. There is
no general process for determining the solvability of a statement given a set of logical
axioms.

5. Legacy

Today, Turing is considered to be a key figure in the development of computer science.
However, he wrote his paper on computability, developing the computing machines
which would become known as universal Turing machines, for the mathematical com-
munity. In some ways his computing machines are far removed from today’s computers
since his have no concept of memory or storage, and he isn’t concerned with the time it
takes for his machines to carry out operations, for example. And yet, it can be shown
that any computer that can emulate a Turing Machine is a “universal” computer, and
any universal computer can emulate any other universal computer. Thus, in a way,
modern computers and Turing’s hypothetical computing machines are the same. In
1936, far in advance of the building of anything resembling a modern day computer,
Turing had already proven that there are some things that no computer will ever be
able to do.

References

[1] Hilbert, David. Mathematical problems. Bulletin of the American Mathematical Society. Vol 8
(1902), no. 10, 437-479.

[2] Petzold, Charles. The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on
Computability and the Turing Machine. Wiley Publishing, Inc., 2008.

[3] Turing, A. M. On Computable Numbers, with an Application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, Col s2-42, Issue 1, 1 January 1937, 230-265.

Appendix

To clarify some concepts, additional examples of Turing computing machines are pro-
vided in this section. These are chosen for the reader to compare and contrast against
the machine which computes 1/3, used as an example in Section 2.

(1) An example of a machine which is circular is given by the following table. This
machine is circular because it does not print 0’s and 1’s forever.

m-config. symbol operations final m-config.
b None P0, R c
c None R c

USING COMPUTABLE NUMBERS TO SOLVE THE DECISION PROBLEM 9

(2) We can rewrite the table for the 1/3 computing machine in a much more com-
pact form, if we allow the machine to move more than one square at a time.

m-config. symbol operations final m-config.
b None P0 b
b 0 R,R, P1 b
b 1 R,R, P0 b

So we only have one m-configuration, but the machine performs different oper-
ations based on the currently scanned square.

(3) Recall that the configuration of a machine, which is a combination of a m-
configuration and the currently scanned symbol, define what operations (print-
ing, moving, etc) the machine will take. The 1/3 computing machine that we
used as an example in Section 2 never printed a symbol other than a 0, never
erased a symbol, and always had the currently scanned square blank. The fol-
lowing machine is an example of a machine which will print a x, erase it, and
scan a non-blank square.

As always, we begin with a blank tape, and in m-configuration b. P0 means
the machine prints a 0, P1 means it prints a 1, Px means it prints a x, E
means the machine erases the currently scanned square, and R means that the
machine moves to the right. Here is our tape at the start, where the scanned
square is heavily outlined:

. . .

m-config. symbol operations final m-config.
b None P0, R c
c None Px d
d x E,R e
d None R f
e None P0, R d
f None P1, R d

Since the machine is in m-configuration b and there is no scanned symbol, then
the machine prints a 0, moves to the right, and switches to m-configuration c.
The tape is now:

0 . . .

Now the machine is in m-configuration c and there is no scanned symbol. There-
fore, the machine prints a x (the current square is an E-square, so printing
symbols other than 0’s and 1’s is okay) and switches to m-configuration d. The
tape is now:

0 x . . .

Now the machine is in m-configuration d, and the scanned symbol is x. There-
fore, the machine erases the square (the current square is an E-square, so erasing

10 KATHERINE STEINER

is okay), moves to the right, and switches to m-configuration e. The tape is
now:

0 . . .

Now the machine is in m-configuration e and there is no scanned symbol. There-
fore, the machine prints a 0, moves to the right, and switches to m-configuration
d. The tape is now:

0 0 . . .

Now the machine is in m-configuration d and there is no scanned symbol. Recall
that the machine has been in m-configuration d before, but with a different
scanned symbol (x). This time, the table tells us that the machine moves right
and switches to m-configuration f. The tape is now:

0 0 . . .

Now the machine is in m-configuration f and there is no scanned symbol. There-
fore, the machine prints a 1, moves right, and switches to m-configuration d.
The tape is now:

0 0 1 . . .

Now the machine is inm-configuration d and there is no scanned symbol. There-
fore, the machine moves right and switches to m-configuration f. By inspection,
we see that now the machine will switch between m-configuration d and f, and
continue to print 1’s on alternating squares. Thus, this machine computes the
binary sequence 0011111

The operations of this machine might be a little confusing. We could define
another machine which computes exactly the same sequence, but without hav-
ing to bother with printing and erasing a x. Perhaps you can try to write out
the table of such a machine! But this table serves as a fairly short example
of a machine which carries out different operations depending on the scanned
symbol, and as an example of a machine which prints symbols other than 0’s
and 1’s, and which erases symbols.

For a much more complicated example, see Turing’s table for a machine which
computes 010110111011110111110 . . . (0, one 1, 0, two 1’s, 0, three 1’s, etc) on
page 234 of his paper, or example 5, below.

(4) An easy way to define another computing machine which also computes 1/3,
but is different than the one we used as an example in Section 2, is to add an
unnecessary line to the machine’s table. For example:

USING COMPUTABLE NUMBERS TO SOLVE THE DECISION PROBLEM 11

m-config. symbol operations final m-config.
b None P0, R c
c None R e
e None P1, R f
f None R b
g None L b

This machine is exactly the same as the one we used as an example, except
that it also has m-configuration g. But since no other m-configuration switches
to it, clearly m-configuration g will never be used. If we let g be q5 when we
construct the machine’s description number, we’ll get the same description as
before, but with q5S0S0Lq1; added at the end. The description number of this
machine is then:

31332531173113353111731113322531111731111335317311111334317

which is the same as our previous example, with 311111334317 added on at the
end.

(5) Here is one last example of a computing machine. The table hasm-configurations
which perform many more operations at a time than what is technically allowed,
but we could simply define more m-configurations to put this table back in the
form Turing required. But the idea of the machine is the same, so see if you
can figure out what sequence it will print! The operations are defined as usual,
and the machine begins in m-configuration q1 with a blank tape.

m-config. symbol operations final m-config.
q1 None P1, R,R q2
q2 None P0, R,R q3
q3 None P1, R, Px,R q4
q4 None P1, R,R, P1, R,R, P1, R,R q5
q5 None P1, R,R, P0, R,R, P1, R q6
q6 None L,L q6
q6 x E,R q7
q6 y E,R q8
q7 None L,Py,R, P0, R,R, P0, R,R, P0, R,R q5
q7 0 R,R q7
q7 1 R,R q7
q8 None L,Px,R, P1, R,R, P1, R,R, P1, R,R q5
q8 0 R,R q8
q8 1 R,R q8

