
Divisibility of a number and its reverse 25 August 2022

Once upon a time, my friend Renee texted me “if you take any (ig 2 digit) number and flip the
digits, the difference between the 2 numbers will always be a multiple of 9”. And then: “i wonder
why that is”.

Claim. If n is a 2 digit number and m is the reverse of n, then 9 divides n−m.

Proof. Let n be a 2 digit number. Then n can be written as 10a+ b for a, b ∈ [0, . . . , 9].

Let m be n with its digits reversed, m = 10b+ a.

Then,
n−m = (10a+ b)− (10b+ a) = 9a− 9b = 9(a− b).

Since a− b ∈ Z, then 9 divides n−m.

Excellent. “i guess” says Renee, “what interests me is how this changes across bases”.

Claim. If n is a 2 digit number in base γ, and m is the reverse of n, then γ − 1 divides n−m.

Proof. Let n be a 2 digit number in base γ. Then n = γa+ b for a, b ∈ [0, . . . , Aγ−1].

I don’t know conventional notation works here but I’m saying that I need 2 symbols, and the first
one gets multiplied by the base which is γ, and in your system you get γ symbols, and they are
0, 1, 2, . . . , Aγ−1.

So in base γ = 10, n = 10a + b, and a, b ∈ [0, . . . , 9]. In base γ = 5, we get n = 5a + b, and
a, b ∈ [0, . . . , 4].

Let m = γb+ a. Now,

n−m = (γa+ b)− (γb+ a) = γa− a+ b− γb = (γ − 1)a− (γ − 1)b = (γ − 1)(a− b).

And thus γ − 1 divides n−m.

At this point I have a feeling it works for numbers with more digits than 2. To get a feel for
how the argument might go for an arbitrary number of digits, I start trying out the argument for
specific numbers of digits.

Claim. Let n be a 7-digit number in base γ. Then n = a0 +a1γ+a2γ
2 +a3γ

3 +a4γ
4 +a5γ

5 +a6γ
6

for ai ∈ [0, . . . , Aγ−1].
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Proof. Let m be the reverse of n, a6 + a5γ + a4γ
2 + a3γ

3 + a2γ
4 + a1γ

5 + a0γ
6. Now,

n−m = (a0 + a1γ + a2γ
2 + a3γ

3 + a4γ
4 + a5γ

5 + a6γ
6)

− (a6 + a5γ + a4γ
2 + a3γ

3 + a2γ
4 + a1γ

5 + a0γ
6)

= a0(1− γ6) + a1(γ − γ5) + a2(γ
2 − γ4) + a3(γ

3 − γ3)
+ a4(γ

4 − γ2) + a5(γ
5 − γ) + a6(γ

6 − 1)

= −a0(γ6 − 1)− a1γ(γ4 − 1)− a2γ2(γ2 − 1)

+ a4γ
2(γ2 − 1) + a5γ(γ4 − 1) + a6(γ

6 − 1)

= (a6 − a0)(γ6 − 1) + γ(a5 − a1)(γ4 − 1) + γ2(a4 − a2)(γ2 − 1)

= (a6 − a0)(γ3 + 1)(γ3 − 1) + γ(a5 − a1)(γ2 + 1)(γ2 − 1)

+ γ2(a4 − a2)(γ + 1)(γ − 1)

= (a6 − a0)(γ3 + 1)(γ − 1)(γ2 + γ + 1) + γ(a5 − a1)(γ2 + 1)(γ + 1)(γ − 1)

+ γ2(a4 − a2)(γ + 1)(γ − 1)

n−m = (γ − 1)[(a6 − a0)(γ3 + 1)(γ2 + γ + 1) + γ(a5 − a1)(γ2 + 1)(γ + 1) + γ2(a4 − a2)(γ + 1)]

And thus γ − 1 divides n−m.

Now we can look at the most general case.

Claim: Let N be a k digit number in base γ, let M be the reverse of N . Then γ−1 divides N −M .

Proof. Let N be a k digit number in base γ. Trivially, if k = 1, then N = M and N −M = 0, and
γ − 1 divides N −M . So suppose k ≥ 2.

Then N can be written

N = a0 + a1γ + a2γ
2 + · · ·+ ak−2γ

k−2 + ak−1γ
k−1 =

k−1∑
i=0

aiγ
i

for ai ∈ [0, . . . , Aγ−1], i.e., ai is one of γ different symbols.

The reverse of N is then

M = ak−1 + ak−2γ + ak−3γ
2 + · · ·+ a1γ

k−2 + a0γ
k−1 =

k−1∑
i=0

aiγ
k−1−i.

Now we can consider N −M :

N −M = (a0 + a1γ + · · ·+ ak−1γ
k−1)− (ak−1 + ak−2γ + · · ·+ a0γ

k−1) (1)

= a0(1− γk−1) + a1(γ − γk−2) + · · ·+ ak−2(γ
k−2 − γ) + ak−1(γ

k−1 − 1) (2)
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We want to prove that γ − 1 divides the entire polynomial on the left. We’ll do this by showing
that γ − 1 divides all k terms in that sum.

Note that if k is odd, then the middle term in the above expression is a(k−1)/2(γ
(k−1)/2 − γ(k−1)/2)

which is of course 0. So if this term exists, we already know γ − 1 divides it.

For any other term, observe that each of the terms in the sum looks something like ai(γ
i− γk−1−i)

for some i ∈ [0, . . . , k − 1]. Let i > k − 1− i. (If i < k − 1− i, simply factor out a −1 and rewrite,
since the sign of ai will not change whether or not the term is divisible by γ − 1, and i = k − 1− i
is precisely the term we showed cancels out above). Then we can rewrite this term as

±aiγk−1−i(γi−(k−1−i) − 1) = ±aiγk−1−i(γ2i−k+1 − 1).

For ease of notation, let x = 2i− k + 1, and note that x > 0 since i > k − 1− i. This means that
each term in (2) can be written as

±aiγk−1−i(γx − 1).

We’ll focus on the γx − 1 factor and show that γ − 1 divides it for any x.

Case 1. If x = 1, then we’re done, γ − 1 is a divisor of that term.

Case 2. If x is even, then x = 2y for some y, and we have a difference of squares:

γx − 1 = γ2y − 1 = (γy − 1)(γy + 1).

Now we can repeat this process with γy − 1; either y is 1 and we’re done as in Case 1, y is even
and we repeat this case again, or y is odd and we continue with Case 3.

Case 3. If x is odd, then we have a difference of odd powers:

γx − 1 = (γ − 1)(γx−1 + γx−2 + · · ·+ γ + 1).

And we see that γ − 1 divides γx − 1 for odd x.

In all cases, eventually we get that γ − 1 divides γx − 1, and we can write each of our terms:

±aiγk−1−i(γx − 1) = aiPi(γ − 1)

where Pi is some polynomial of γ with integer coefficients. This means we can write (2) as

N −M = a0P0(γ − 1) + a1P1(γ − 1) + · · ·+ ak−1Pk−1(γ − 1)

= (γ − 1)(a0P0 + a1P2 + · · ·+ ak−1Pk−1).

It follows that γ − 1 divides N −M , for all k.
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